metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Influence of Cl/Br substitution on the stereochemical peculiarities of copper(I) π -complexes with the 1-allyl-2-aminopyridinium cation

Evgeny Goreshnik,^a* Dieter Schollmeier^b and Marian Mys'kiv^c

^aGZG, Department of Crystallography, University of Göttingen, Goldschmidt Straße 1, 37077 Göttingen, Germany, ^bInstitute of Organic Chemistry, Johannes Gutenberg University, Duesbergerweg 10-14, 55099 Mainz, Germany, and ^cDepartment of Inorganic Chemistry, Ivan Franko National University of L'viv, Kyryla and Mefodia Str. 8, 79005 L'viv, Ukraine Correspondence e-mail: yhoryes@gwdg.de

Received 18 August 2003 Accepted 2 October 2003 Online 22 October 2003

By using alternating-current electrochemical synthesis, crystals of the Cu^I π -complexes bis(1-allyl-2-aminopyridinium) di- μ -chloro-bis[chlorocopper(I)], $(C_8H_{11}N_2)_2$ [Cu₂Cl₄] or [H₂N- $C_5H_4NC_3H_5$ [CuCl₂], and bis(1-allyl-2-aminopyridinium) di- μ -(chloro/bromo)-bis[(chloro/bromo)copper(I)], $(C_8H_{11}N_2)_{2-}$ $[Cu_2Br_2Cl_{1.8}]$ or $[H_2NC_5H_4NC_3H_5]$ [CuBr_{1.10}Cl_{0.90}], have been obtained and structurally investigated. In each of the isostructural (isomorphous) compounds, the distorted tetrahedral Cu environment involves three halide atoms and the $C = C$ bond of the ligand. Both compounds reside on inversion centres, and the dimeric $\left[\text{Cu}_2X_4 \cdot 2\text{H}_2\text{NC}_5\text{H}_4\text{NC}_3\text{H}_5\right]$ units are bonded into a three-dimensional structure by $N-H\cdots X$ hydrogen bonds. The Br content in the terminal $X1$ position is much higher than that in the bridged $X2$ site.

Comment

Few investigations of Cu π -complexes with heterocyclic ligands have been reported; for example, only a few publications refer to Cu^I π -complexes with pyridine derivatives (e.g. Munakata et al., 1987). Potential biological activity (Ghiladi et al., 2001; Rhames et al., 2001) in such compounds has led us to focus our scientific interests on structural investigations of $Cu¹$ π -complexes with the allyl derivatives of heterocycles. The Cu^I halide π -complexes with the 1-allyl-4-aminopyridinium cation (Goreshnik et al., 2003) have shown some interesting peculiarities in their stereochemistry, such as non-isomorphic chlorine/bromine replacement and the noticeable influence of Cl/Br substitution on the π interaction. This result has prompted our structural investigations of Cl- and Cl/Br-Cu^I π -complexes with the 1-allyl-2-aminopyridinium cation, *viz*. the title complexes, (I) and (II).

In the crystal structures of (I) and (II), the Cu and Cl atoms form centrosymmetric $Cu₂X₄$ dimers (Fig. 1). Similar inorganic fragments have been found in Cl– and Cl/Br–Cu^I π -complexes with the N-allylbenzothiazolium cation (Goreshnik & Mys'kiv, 1999). The distorted tetrahedral Cu-atom geometry includes a terminal halide atom $(X1)$ and a pair of symmetrically generated bridging $X2$ atoms. The fourth site is occupied by the $C = C$ bond of the allyl-containing cation. In (I) , the distance from the Cu atom to the terminal Cl atom (Cl1) is the shortest Cu – Cl distance, whereas the distances to bridging atoms Cl2 and Cl2' are longer and noticeably different from one another (Table 1). In (II), the short $Cu - X1$ distance is elongated compared with that in (I) (Table 3); this behaviour is consistent with a partial replacement of Cl atoms by Br atoms. The Cu-bridging halide distance in (II) is only slightly longer than that in (I).

The $C-Cu-C$ angle provides a suitable parameter for measuring the Cu–olefin interaction, being dependent on both the C=C bond elongation and the $Cu-(C=C)$ distance contraction. The Cu–(C=C) bond consists of the $(Cu^I-L)\sigma$ donor-acceptor component, formed as a result of the overlapping of the occupied olefin π orbital and the unoccupied $4s^0$ orbital of the Cu^I atom, and the $(Cu^I – L)\pi$ dative component, based on electron-density draw-off from the $3d^{10}$ Cu^I orbitals to the unoccupied antibonding orbital of the $C = C$ group (L is a C=C group). The σ component is less sensitive to the olefin bond orientation and causes a shortening of the Cu \cdots Cg (Cg) is the centroid of the $C = C$ bond) distance, whereas the π -dative component, being strongly dependent on a proper olefin group orientation in the metal coordination sphere, causes a lengthening of the $C = C$ bond. Therefore, both components effect an increase of the $C-Cu-C$ angle. Thus, a shortening of the Cu \cdots Cg distance and a lengthening of the $C=C$ distance, together with an increase of the $C-Cu-C$ angle, are useful data for an estimation of the effectiveness of the Cu $-(C = C)$ interaction. An effective Cu $-(C = C)$ interaction leads, in turn, to transformation of the Cu-atom coordination polyhedron from tetrahedral to trigonal pyramidal, with the olefin group located in the basal plane and a lengthening of the $M-L_{\text{axial}}$ distance.

In (I), the Cu \cdots Cg distance [1.968 (1) Å], C=C distance [1.357 (5) A^{$\,$} and C-Cu-C angle [38.1 (1)^o] indicate an efficient Cu^{I} - (C=C) bonding. On the other hand, the distorted tetrahedral shape of the Cu environment shows that the $(Cu^I - L)\pi$ dative component of the metal-olefin interaction is strongly suppressed, which could be explained by the presence of three halide atoms in the Cu coordination sphere. It is well known that a high bromine content in a Cu^I arrangement suppresses the π interaction, as observed in (II). The Cu \cdots Cg distance is slightly elongated compared with that in (I) [1.980 (4) \AA]; this fact, together with the smaller C-Cu–C angle [37.4 (2)^o] and the length of the C=C bond [1.341 (6) \AA] in (II), confirms a marked suppression of the metal-olefin interaction in (II).

In the terminal $X1$ site, the Br content [0.793 (5)] is much greater than that in the bridging $X2$ site [0.308 (5)]. Possibly, the bridging function of the $X2$ atom and, consequently, its bonding with two Cu atoms causes the Cl content of the $X2$ site to be higher than that of the $X1$ site. As in the structure of $C_{10}H_{10}NS^+$ [CuCl_{1.08}Br_{0.92}]⁻·H₂O (Goreshnik & Mys'kiv, 1999), the Br content is much higher for a terminal halide position than for a bridging one [0.654 (7) and 0.429 (7), respectively]. Isolated $\left[\text{Cu}_2X_4 \cdot 2\text{H}_2\text{NC}_5\text{H}_4\text{NC}_3\text{H}_5\right]$ units are joined into a three-dimensional structure via strong $N-H\cdots X$ hydrogen bonds [2.47 and 2.50 \AA in (I), and 2.52–2.64 \AA in (II); Tables 2 and 4]. The pyridine rings are oriented in the (101) plane, and the shortest ring-ring distance $[3.67 (1) \text{ Å}]$ corresponds to stacking of the aromatic fragments.

Recently, we proposed (Goreshnik et al., 2003) that the shortest Cl···Cl distances (3.6 Å) could be a cause of nonisomorphic Cl/Br replacement. Contrary to this proposal and despite the rather high Br content of (II), compounds (I) and (II) are isomorphous. The shortest $Cl \cdots Cl$ distance in (I) is 3.559 (1) \AA and the shortest distance in (II) is only slightly longer $[3.655 (6) \text{ Å}]$. Comparisons of (I) and (II) with $C_{10}H_{10}NS^+$ [CuCl₂]⁻ · H₂O and $C_{10}H_{10}NS^+$ [CuCl_{1.08}Br_{0.92}]⁻ · -H2O reveals that only these pairs demonstrate an isomorphic

Figure 1

A view of (I), with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level. Compound (II) is isomorphous with (I).

chlorine/bromine replacement up to a high bromine content. In our opinion, the cationic status of the ligand and the formation of strong hydrogen bonds $[O-H \cdots X]$ for N-allylbenzothiazolium complexes, and $N-H\cdots X$ for (I) and (II)] stabilize the $3Cl + C = C$ copper environment. In turn, such an environment adapts easily to the atomic size of bromine and allows the possibility of Cl/Br isomorphic replacement.

The presence in inorganic-organic hybrid compounds of low-charged small organic cationic components promotes large inorganic fragment formation (Weitkamp & Puppe, 1999). However, in (I) and (II), and in the previously reported Cu^T π -complexes with the 1-allyl-4-aminopyridinium cation, only $\left[\text{Cu}X_2\right]^-\text{ or } \left[\text{Cu}_2X_4\right]^2$ inorganic anions are formed. The $N-H\cdots X$ hydrogen bonds play an important role in such behaviour. Being strongly bonded to halide atoms, the H atoms compete with metal atoms for a place in a halide geometrical arrangement, preclude any bridging function of the halide atoms and, therefore, promote the formation of small inorganic fragments.

Experimental

1-Allyl-2-aminopyridinium chloride and 1-allyl-2-aminopyridinium bromide were obtained from 2-aminopyridine and allyl chloride or bromide, respectively, in CHCl₃ solution. All reagents were purchased commercially and used as received. Good quality crystals of (I) and (II) were obtained using the alternating-current electrochemical technique (Mykhalichko & Mys'kiv, 1989), starting from copper(II) chloride dihydrate and 1-allyl-2-aminopyridinium chloride or bromide, respectively. To an ethanol solution (2 ml) of $CuCl₂·2H₂O$ (1 mmol) was added an ethanol solution (2 ml) of 1-allyl-2-aminopyridinium chloride or 1-allyl-2-aminopyridinium bromide (1.2 mmol). The resulting solution was placed in a small test tube and Cu-wire electrodes in cork were inserted. After the application of a 0.30 V alternating current (frequency 50 Hz) for several days, colourless crystals of (I) and (II) appeared on the Cu electrodes. The density, measured by flotation in a $CHCl₃/CHBr₃$ mixture, was found to be 1.8 Mg m^{-3} for (I) and 2.0 Mg m^{-3} for (II).

 $from 25$

min

Compound (I)

 β

Refinement

Table 1

Selected geometric parameters (A, \circ) for (I).

Symmetry code: (i) $1 - x$, $1 - y$, $1 - z$.

Table 2

Hydrogen-bonding geometry (\mathring{A}, \degree) for (I).

$D - H \cdots A$	$D=H$	$H\cdots A$	$D\cdots A$	$D=H\cdots A$
$N10-H10A\cdots C11^i$	0.92	2.50	3.408(3)	168
$N10-H10B\cdots C12^{ii}$	0.89	2.47	3.318(3)	159

Symmetry codes: (i) $1 - x$, $1 - y$, $1 - z$; (ii) $1 - x$, $2 - y$, $1 - z$.

Compound (II)

Crystal data

Data collection

Enraf-Nonius CAD-4 diffractometer $\theta/2$ o scans Absorption correction: numerical (de Meulenaer & Tompa, 1965) $T_{\min} = 0.180, T_{\max} = 0.414$ 2262 measured reflections 2129 independent reflections 2096 reflections with $I > 2\sigma(I)$

Refinement

```
Refinement on F^2R[F^2 > 2\sigma(F^2)] = 0.036wR(F^2) = 0.097S = 1.182129 reflections
143 parameters
H-atom parameters constrained
w = 1/[\sigma^2(F_o^2) + (0.0454P)^2]+0.8022Pwhere P = (F_o^2 + 2F_c^2)/3
```
 $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.72$ e Å $^{-3}$ $\Delta \rho_{\rm min} = -0.61$ e ${\rm \AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0060 (6)

Table 3

Selected geometric parameters (\mathring{A}, \circ) for (II).

Symmetry code: (i) $1 - x$, $1 - y$, $1 - z$.

 \mathbf{r} \mathbf{r}

Symmetry codes: (i) $1 - x$, $1 - y$, $1 - z$; (ii) $1 - x$, $2 - y$, $1 - z$.

In both (I) and (II), H atoms were treated as riding, with variable displacement parameters [except for the H atoms attached to atom C7 in (I), for which $U_{iso}(H) = 1.2U_{eq}(C)$]. H atoms attached to atom N10 in (I) were refined isotropically.

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: enCIFer (Cambridge Crystallographic Data Centre, 2003).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1181). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

 $R_{\text{int}} = 0.034$

 $\theta_{\text{max}} = 73.8^{\circ}$

 $h = -8 \rightarrow 8$

 $k = -10 \rightarrow 10$

3 standard reflections

frequency: 60 min

intensity decay: 2%

 $l = -11 \rightarrow 0$

- Bergerhoff, G. (1996). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Cambridge Crystallographic Data Centre (2003). enCIFer. URL: http:// www.ccdc.cam.ac.uk/prods/encifer/.
- Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762. (Revised version of 1994 by L. Wiehl & D. Schollmeyer, University of Mainz, Germany.)
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Ghiladi, R. A., Hatwell, K. R., Karlin, K. D., Huang, H.-W., Moënne-Loccoz, P., Krebs, C., Marzilli, L. A., Cotter, R. J., Kaderli, S. & Zuberbühler, A. D. (2001). J. Am. Chem. Soc. 123, 6183-6184.
- Goreshnik, E. A. & Mys'kiv, M. G. (1999). Pol. J. Chem. 73, 1245-1252.
- Goreshnik, E. A., Schollmeyer, D. & Mys'kiv, M. G. (2003). Z. Anorg. Allg. Chem. 629, 2040-2045.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Munakata, M., Kitagawa, S., Simono, H., Emory, T. & Masuda, H. (1987). J. Chem. Soc. Chem. Commun. pp. 1798-1799.
- Mykhalichko, B. M. & Mys'kiv, M. G. (1998). Ukraine Patent UA 25450A, Bull. No. 6.
- Rhames, F. C., Blackburn, N. J., Murthy, N. N. & Karlin, K. D. (2001). J. Biol. Inorg. Chem. 6, 567-577.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Weitkamp, J. & Puppe, L. (1999). In Catalysis and Zeolites. Berlin: Springer Verlag.